10 research outputs found

    Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VI) HFODD (v2.38j): a new version of the program

    Full text link
    We describe the new version (v2.38j) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the D2h transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected two insignificant errors.Comment: 45 LaTeX pages, 4 figures, submitted to Computer Physics Communication

    Dealing with Multiple Motions in Optical Flow Estimation

    No full text
    In this paper, a new approach to optical flow estimation in presence of multiple motions is presented. Firstly, motions are segmented on the basis of a frequency-based approach that groups spatio-temporal filter responses with continuity in its motion (each group will define a motion pattern). Then, the gradient constraint is applied to the output of each filter so that multiple estimations of the velocity at the same location may be obtained. For each "motion pattern", the velocities at a given point are then combined using a probabilistic approach. The use of "motion patterns" allows multiple velocities to be represented, while the combination of estimations from di#erent filters helps reduce the aperture problem

    Uncertainty quantification and propagation in nuclear density functional theory

    No full text

    Computation and analysis of image motion: A synopsis of current problems and methods

    No full text

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore